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Abstract 
The  majority of planning  and  scheduling research has 
focused  on  batch-oriented  models of planning.  This paper 
discusses  the  use of iterative  repair  techniques to support a 
continuous  planning  process as is  appropriate  for 
autonomous  spacecraft  control.  This  allows the plan to 
incorporate  execution  feedback - such as early or late 
completion of activities,  and  over-use or under-use of 
resources. In this  approach,  iterative repair supports 
continuous  modification  and  updating of a current  working 
plan in light of changing  operating  context. 

Introduction 
In recent  years  Galileo,  Clementine, Mars Pathfinder, 
Lunar  Prospector,  and  Cassini have all demonstrated a new 
range of robotic  missions to explore  our solar system. 
However,  complex  missions  still  require  large teams of 
highly  knowledgeable  personnel  working around the clock 
to generate  and  validate  spacecraft  command  sequences. 
Increasing  knowledge of our  Earth,  our  planetary  system, 
and  our  universe  challenges NASA to fly large numbers of 
ambitious  missions,  while fiscal realities  require  doing so 
with budgets  far  smaller than in the past. In this climate, 
the automation of spacecraft  commanding  becomes an 
endeavor of crucial  importance. 

Autonomous  spacecraft  are  made  possible by equipping 
the  spacecraft with on-board  software that provides 
knowledge  and  reasoning  procedures to determine 
appropriate  actions  that  achieve mission goals, to monitor 
spacecraft  health  during  execution, and to recover 
autonomously  from  possible  faults  (Muscettola  et al. 
1999). An  on-board  planner/scheduler  is a key component 
of such a highly  autonomous  system. 

Recent  experiences  indicate the promise o f  planning and 
scheduling  technology  for  space  operations. Use of the 
DATA-CHASER  automated  planning and scheduling 
system  (DCAPS) to command the DATA-CHASER  shuttle 
payload  reduced  commanding-related mission operations 
effort by 80% and  increased  science return by 40% over 
manually  generated  sequences  (Chien et al. 1999). This 
increase was possible  because  short  turn-around times 

(approximately 6 hours)  imposed by operations  constraints 
did  not allow for lengthy,  manual  optimization.  And  the 
Remote  Agent  Experiment (ARC,  JPL  et al. 1999) 
demonstrated the feasibility of flying  AI  software 
(including a planner)  to  control a spacecraft. 

This paper describes  a  further  step in incremental 
planning and scheduling. In this  approach,  rather  than 
constructing batch back-to  back  plans, a persistent  agent 
always has a plan for a fixed  time  span in to the  future. 

The  remainder of this paper is organized as follows. 
First, we describe  our  approach to interleaving  planning 
and execution and how it improves the responsiveness of 
the planning  component.  Next, we describe  technical 
details of our  approach to interleaving  planning and 
execution and how this  approach  is used to  reduce this 
response time of the planner/scheduler.  We then highlight 
how this  system  works  using  examples  from  spacecraft 
operations.  We then describe an empirical  evaluation of 
our approach in a stochastic  domain.  Finally, we describe 
future work and related work  and conclusions. 

Integrating  Planning and Execution 
Traditionally, much of planning  and  scheduling  research 
has focused on a batch formulation of the problem. In this 
approach  (see Figure I), time  is  divided up into a number 
of planning  horizons,  each of which  lasts for a significant 
period of time.  When  one  nears the end of the  current 
horizon, one projects what the state will be at the end of 
the execution of the current  plan.  The  planner is invoked 
with a new set of goals and this  state as the initial  state  (for 
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Figure 1 Tradi t ional   Batch  "Plan then 
Execute"  Cvcle 
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cxanIpIc thc liemote Agent Experiment operated i n  this 
I'ashion (Pcll ct ;d. 1997). 

This approach has a number of drawbacks. In  this  batch 
oricnlcd ~~loclc. typically planning is considered an off-line 
process which rcquircs  considerable  computational effort, 
Iwnce tllerc is ;I significant  delay from the time the planner 
is invoked to the time that the planner produces a new 
plan.' I f  a negative event occurs (e.g., a plan failure), the 
response time until a new  plan may be significant. During 
this period the system being controlled must be operated 
appropriately  without planner guidance. 

If a positive event occurs (e.g., a fortuitous opportunity), 
again the response time may be significant. If  the 
opportunity is short lived (e.g.,  activities  finishing  early), 
the system  must be able to take advantage of such 
opportunities  without a new plan (because of the delay in 
generating a new plan). 

Finally,  because the planning  process may need to be 
initiated significantly before the  end of the current 
planning  horizon, it may be difficult  to project 'what the 
state will  be when the current  plan  execution is complete. 
If the projection is  wrong  the  plan may have  difficulty. 

For example,  consider  the  operations of a spacecraft. In 
a traditional plan-sense-act cycle,  planning is occurs  on a 
relatively long-term  planning  horizon. In this approach, 
operations for a spacecraft would be planned on the ground 
on a weekly or daily basis. The  spacecraft  state  at the start 
of the planning  horizon  would be determined (typically 
predicted as the  construction of the weekly plan would 
need to begin significantly before the week of execution). 
The  science and  engineering  operations  goals would then 
be considered,  and a plan for  achieving the goals would be 
generated.  This plan or sequence would then be  uplinked 
to the spacecraft  for  execution.  The plan would then be 
executed  onboard  the  spacecraft with little or  no flexibility. 
If an unexpected event  occurred  due to environmental 
uncertainty or an  unforeseen  failure  occurred, the 
spacecraft would be taken into a safe  state by fault 
protection software. The spacecraft would wait in this state 
until the ground  operations  team could respond and 
determine a new plan. Correspondingly, if an 
unpredictable  fortuitous  event  occurs,  the plan cannot be 
modified to take advantage of the situation. 

' As a data  point, the planner for the Remote  Agent 
Experiment (RAX)  flying on-board the New Millennium 
Deep  Space  One mission (Muscettola et a1 1997) takes 
approximately 4 hours to produce a 3 day operations plan. 
RAX is running  on a 25 MHz  RAD 6000 flight processor 
and uses roughly 25% of the CPU processing power. 
While this is a significant  improvement  over waiting for 
ground intervention,  making  the  planning  process  even 
more  responsive (e.g.. on a time scale of seconds or tens  of 
seconds)  to  changes in the  operations  context, would 
increase the overall time for which the spacecraft has a 
consistent plan. As long as a consistent plan exists, the 
spacecraft can keep busy working  on the requested goals 
and hence may  be able to achieve more science  goals. 

A 

To achieve a higher level of responsiveness in a cfynamic 
phnning situation, we utilize a continuous planning 
approach and  have implemented a system called CASPER 
(for Continuous Activity Scheduling  Planning Execution 
and Replanning). Rather than considering planning a batch 
process i n  which a planner is presented with goals and an 
initial state, the planner has a current  goal set. a plan, a 
current state, and a model  of  the expected future state.  At 
any time an incremental update to the goals,  current state, 
or planning hori,zon (at much smaller time increments than 
batch planning)-. may update the current  state of the plan 
and thereby invoke the planner process.  This  update may 
be  an  unexpected event or simply time progressing 
forward. The planner is  then responsible  for  maintaining a 
consistent, satisficing plan  with the most current 
information. This  current plan and projection is the 
planner's estimation as to what it expects  to  happen in the 
world  if things go as expected.  However,  since  things 
rarely go exactly as expected, the planner  stands  ready to 
continually modify the plan. In each  cycle  from the point 
of  view  of the planner the  following  occurs: 

changes to the goals and the initial  state  first  posted 
to  the plan, 
effects of these changes  are  propagated  through  the 
current plan projections  (includes  conflict 
identification) 
plan repair algorithms  are  invoked to remove 
conflicts and make the plan appropriate  for the 
current state  and goals. 

This approach is shown in below in Figure 2. At  each  step, 
the  plan is created by using iterative repair with: 

the portion  of  the  old plan for the current  planning 

the updated goals and  state;  and 
the new (extended)planning  horizon. 

horizon; 

Figure2 Continuous Planning  Incremental 
Extension 

' For the spacecraft control domain we are  envisaging  an 
update rate on  the order of 10s of seconds real time. 



Even though our intent is t o  mukc  the planning proccss 
very responsive  (on the ordcr of seconds), there still 
remains a synchronization  process betwcen planning and 
execution.  We handle this by an activity commitment 
process.  Execution has an activity commitment  window, 
that represents the near future. When an activity overlaps 
with this window (i.e. the activity is scheduled to begin 
very soon) it is committed. This means that  the planner is 
forbidden  from  altering any aspect of this activity (such as 
by moving  the activity or altering the activity parameters). 
Thus far  we have  focused on time-based commitment 
strategies (e.g., commit any activities scheduled to begin in 
the  next T time units), however, our  architecture  supports 
more  complex  commitment  strategies (such as it being 
dependent  on the class of activity and allowing parameter 
changes  later than activity moves, etc.). 

In addition  to  increasing  the  responsiveness of planning, 
the continuous planning  approach  has additional benefits: 

The planner can be more responsive to unexpected 
(i.e.,  unmodeled)  changes in the  environment  that 
would manifest  themselves as updates on the 
execution status of activities as well as monitored 
state  and  resource values. 
The planner  can  reduce  reliance  on predictive 
models (e.g., inevitable  modeling  errors),  since it 
will be updating its plans  continually. 
Fault  protection  and  execution layers need to worry 
about  controlling the spacecraft  over a shorter time 
horizon (as the planner will replan within a shorter 
time  span). 
Because  of  the hierarchical reasoning taking place 
in the  architecture there is no hard distinction 
between  planning  and  execution - rather more 
deliberative  (planner)  functions reside in the longer- 
term  reasoning  horizons  and the more reactive 
(execution)  functions reside in the short-term 
reasoning horizons. Thus,  there is no planner to 
executive translation process. 

In  conjunction with this incremental,  continuous 
planning approach, we are also advocating a hierarchical 
approach  to  planning.  In this approach, the long-term 
planning  horizon is planned only at a very abstract level. 
Shorter and  shorter  planning  horizons  are planned in 
greater  detail, until finally at the most specific level the 
planner  plans  only a short  time in advance (just in  time 
planning).  This  paradigm is illustrated in Figure 3. Within 
each of these  layers, the planner is operating  continuously 
in the  mode  described  above.  However, the length of the 
planning  horizon,  and the frequency with  which the plan  is 
updated varies. In  the longer-term more  abstract levels, the 
planning  horizon is longer  and the abstract plan  is  updated 
less frequently. In the more detailed short-term level, the 
plans  are  updated  more  frequently. 

The  idea behind this hierarchical approach is  that only 
very abstract  projections can be made  over the long-term 
and that detailed  projections  can  only be made in the short- 

term  bccnusc prediction is diflicult  due to limited 
computational rcsourccs and timely response  requirements. 
Hcncc therc is little ut i l i ty  in  constructing a detailed plan 
far into the  future - chances are i t  will end  up being  re- 
planned anyway. At one  extreme the short-term plan  may 
n o t  he “planned” at a 1 1  and may  be a set o f  reactions to  the 
current state in the context of the near-term  plan. This 
approach is implemented in the control  loop  described 
above by making high-level goals  active  regardless of their 
temporal placement, but medium  and  low-level  goals  are 
only active i f  they occur in the  near  future.  Likewise, 
conflicts  are only regarded as important if they are high- 
level conflicts or if they occur in  the  near  future. As the 
time of a conflict or goal  approaches, it will eventually 
become active and the elaboratiodplanning process will 
then  be applied to resolve the problem. 

An  Architecture for Integrated Planning and 
Execution 

Our approach to integration of planning and execution 
relies on three separate  classes  of processes. 

The  Planner  Process(es1 - this process  represents  the 
planner, and  is invoked to update the model of the plan 
execution, to refine the plan, or when new goals  are 
requested. 
The  Execution Precedes) - this process  is 
responsible  for  committing  activities  and  issuing 
actual commands  corresponding to planned  activities. 
The  State  Determination  Processes - this process is 
responsible for monitoring  and estimating  states and 
resource values and  providing accurate and timely 
state information. 
The  Synchronization  Process - this process  enforces 
synchronization between the execution,  planner,  and 
state  determination  processes. This  includes  receiving 
new goals,  determining  appropriate  timeslices for 
planning and locking the plan database  to  ensure non- 
interference between state  updates and  the  planner. 

We  describe planning, execution,  and  state  determination 
as sets of processes because often these  logical  tasks will 
be handled by multiple processes. For example,  spacecraft 
attitude control execution  might be handled by one 
process, data  management by another,  etc.  However,  for 
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I Figure 3 Hierarchical Planning Horizons 



the purposes o f  his paper (e.g.. integration of planning and 
execution). the only relevant issue  is  that our 
synchronizah>n strategy can be applied to a multiple 
process scheme for planning, state  determination, etc. 

The ovcrall architecture for the continuous planning 
approach is shown i n  Figure 4. We now describe how each 
of  the four basic components  operates. 

The planner  process maintains a current plan that is  used 
for planning  (e.g.  hypothesizing different courses of 
action). It responds to requests to replan initiated by the 
execution  processes, activity commitments vfrom the 
execution  module,  state (and resource) updates from  state 
estimation,  and new goals  (from  external  to  the system). 
All of these requests  are  moderated by  the synchronization 
process that queues the requests and ensures that one 
request is complete before another is initiated. The 
planners copy of the current  plan is also where projection 
takes place  and  hence it is  here that future  conflicts  are 
detected.  However, as we will see below,  requests to fix 
conflicts  occur by a more  circuitous route. 

The execution  process  is  the portion of the system 
concerned with a notion of "now". The execution module 
maintains a copy of the plan that  is incrementally updated 
whenever the planner  completes a request (e.g., a goal 
change,  state  change, or activity change). This local copy 
includes conflict  information.  The  execution  module has 
three general responsibilities: 

I .  to commit  activities in accordance with the 
commitment policy as they approach  their execution 
time; 

2. to  actually  initiate  the  execution of commands (e.g., 
processes)  at  the  associated activity start  times 

3. to request  re-planning  when  conflicts  exist in the 
current plan 

The execution  module  performs I & 2 by tracking the 
current  time  and  indexing into relevant  activities  to  commit 
and  execute them. The execution  module also tracks 
conflict  information as computed by the projection of the 
planner and submits a request  for  replanning  to the 
synchronization  module when a conflict exists.' 

The  state estimation  module is responsible for tracking 
sensor data and  summarizing  that information into state 
and  resource updates. These updates  are  made to  the 
synchronization  module that passes them  on to the planners 
plan  database  when  coordination  constraints  allow. 

The synchronization  module  ensures that the planner 
module(s) are  correctly  locked while processing. At any 

In our implementation  replanning is initiated by the 
execution  module because this allows for the notion of 
urgency information (e.g. closeness of the conflict to 
current  execution) to be incorporated in the decision  to 
replan. I f  we did not wish  to incorporate this information, 
the planner  module  could  make this request directly to the 
synchronization  module. 

one time the  planner  can only bc performing one of its four 
responsibilities: (re)planning. updating its goals, 
incorporating a statc update, updating the execution 
module's  plan for execution. or updating commitment 
status (otherwise we run  the risk of race conditions  causing 
undesirable results). The synchronization  module 
serializes these requests by maintaining a FIFO task queue 
for the planner and forwarding the next task only when the 
previous task has finished. 

The execution module also has a potential 
synchronization issue. The planner must not  be allowed  to 
modify activities (through  replanning) if those activities 
might already have been passed on  to execution. We 
enforce this non-interference by "commit"-ing all activities 
overlapping a temporal window extending  from now to 
some short period of time in the  future (typically on the 
order of several  seconds).  We  ensure that the planner is 
called in a way  that each replan request will always return 
within this time bound and we  enforce that the  planner 
never modifies a committed activity. This ensures  that the 
planner  will  not complete a replan with an activity 
modified that is already in the past. Additionally,  we use 
the synchronization process to  ensure  that  the Execution 
module does not commit  activities while the planner  is 
replanning. This prevents the  planner  from  modifying 
activities that have been committed  subsequent  to the 
planner call (but still in the future). 

Figure 4: CASPER Architecture 

ST4 Spacecraft Landed 
Operations Scenario Description 

Space Technology 3 / Champollion (ST4) is a mission 
concept for outer solar  system  exploration. In late 2005, 
following a two-and-a-half-year journey, ST4 will match 
orbits, or rendezvous, with Comet Tempe1 I ,  as the comet 



I S  moving  way I r o m  the Sun. ‘l’llc q m x c r a t t  w ~ l l  spend 
5cvcr:tl months  orbiting the COIIICI  nucleus. nlaking highly 
:Iccurate maps o f  its surlacc .mcl rxtking some preliminnry 
compositional nIe;1surements 0 1 ‘  the gas i n  [he coma. The 
claln returned f r o m  ST4 will be used t o  clctcrnlinc  the mass. 
shape, and density o f  (hc comcl’s nucleus nncl to  make 
some  early  estimates about its composition. 

Alter  studying the nucleus I’rom orbit, the  sp;lcecraft  will 
send ;I small vehicle (;I lander) t o  the surface (An artists 
depiction of the ST4 spacecraft Inncling is shown i n  Figure 
5). The touchdown itself  will  be quite tricky because 
scientists do not know  whether the surface of  the comet 
nucleus is hard, rocky, and  rough,  or soft and fluffy. 
Therefore, the challenge  engineers face in designing the 
technology and instruments for  this spacecraft is  to  be 
prepared for the unexpected. One of  the ways ST4 
engineers  are preparing for all possible  scenarios is by 
devcioping  technologies to anchor the lander into the 
comet’s  surface no matter what its composition. Because 
the  gravity  of  the  comet nucleus is so weak, the lander 
must be anchored  to the surface  to permit drilling and 
sampling. 

Figure 5 Artist depiction of 
ST4 lander  landing on  Comet 

Once  firmly in place. the lander will  use a one-meter 
long drill to collect  samples and then feed  them  to a gas 
chromatograph/mass  spectrometer  onboard the lander. This 
instrument will analyze the composition of the nucleus 
collected  from various depths below the surface.  The 
lander will also carry  cameras to photograph the comet 
surface.  Additional  instruments planned onboard the lander 
to  determine the chemical  makeup of the cometary ices and 
dust will include an infrared/spectroIncter microscope and 
a gamma-ray  spectrometer. After several days on  the 
surface. the lander will bring a sample back to the orbiter 
for return to Earth. 

Continuous Planner ST4 Scenario 
In order 10 test our Integrated planning and execution 
approach. we have constructed a number of  test cases 
within the ST4 landed operatlons  scenario. We have also 
constructed a ST4 simulation, which accepts relatively 

high-level comm~nds such as: MOVE-DRILL,  START- 

<device>. etc.  The  simulation  covers  operations of 
hardware devices. In this test scenario the planner has 
nwclels o f  I I state and resource timelines.  including drill 
location, battery power, data  buffer, and camera state. The 
model also includes 19 activities  such  as uplink data, move 
drill,  compress data, take picture, and perform  oven 
experiment. 

The continuous planner scenario  has  focused  on the 
comet lander portion  of  the ST4  mission. It comprises a 
period of approximately 80 hours of lander  operations  on 
the comet surface. It is intended to represent a class of test 
cases against which to evaluate the performance of various 
command and control strategies  for this portion of the 
mission. 

The nominal mission scenario  consists of three major 
classes of activities: drilling and material  transport, 
instrument activity including  imaging  and  in-situ  materials 
experiments, and data uplink. Of these,  drilling  is  the  most 
complex and unpredictable. 

The mission plan calls  for  three  separate  drilling 
activities. Each drilling activity drills a separate hole and 
acquires samples at three different  depths  during  the 
process: a surface sample, a 20 cm.  deep  sample, and a 
one-meter deep sample. Acquiring a sample  involves five 
separate “mining” operations  after the hole has been drilled 
to the desired depth. Each mining operation removes 1 cm. 
of material. Drilling rate and  power are unknown a priori, 
but there are  reasonable worst-case estimates  available. 
Drilling can fail altogether  for a variety of  reasons. 

One of the  three drilling  operations  is used to  acquire 
material for sample-return. The  other two are used to 
supply material to  in-situ science  experiments onboard the 
lander. These  experiments  involve depositing the samples 
in an oven, and taking data while the  sample  is  heated. 
Between baking operations the oven  must cool, but there 
are two ovens, allowing experiments to be interleaved 
unless one of  the ovens fails. 

We apply CASPER to this scenario to demonstrate three 
capabilities: I )  the ability to  replan  due to exogenous  state 
conflicts  (such  as  equipment  failures), 2) the ability  to 
replan due to exogenous  resource contlicts  (such as over- 
subscription of memory buffers), 3) and the ability  to 
replan due to activity updates  (such as drilling  finishing 
late.) 

One of  the continuous  planner  capability  to  replan to 
perform a resource substitution after a component  failure 
(Objective I ) .  The three planned sample  activities  each 
use oven I for baking the  comet  samples. During  the 
simulation run, a failure was injected  on  oven 1. This 
changed the oven I state to “failed” for the remainder of 
the simulation. Because the second  and third sample 
activities (as planned) use oven 1, these  sample  activities 
are in conflict because the sample  activities  require  an 
operational oven (but  are planned to  use a “failed” oven). 
The planning system recognizes this conflict  as a state 
required by an activity being different from the actual (or 

DRILL, STOP-DRILL,  TAKE-PICTURE,  TURN-ON 



projected)  state.  The planner then attempts  several  lixes, 
including  finding  an  activity to change the incorrect  state. 
Unfortunately,  there  are no such  activities to "fix" the 
oven.  However, the sample  activities require an  oven 
resource, and there are two ovens on  the ST4 lander. 
Hence the planner is able to find a repaired plan in which 
the  second  and third samples use oven 2 (see  Figure 5.) 
The  planning  system could also have deleted the activity in 
conflict.  However, the prioritization with the repair 
algorithm  always  considers  moving or adding  other 
activities to solve the conflict  before  deleting the 
conflicting  activity. 

Another  continuous  planner  capability is to replan when 
a  aggregate  resource is over-subscribed  or under-utilized 
(Objective 2). The  data  collected  during  the  sample 
activities is compressed and then stored in the data buffer 
of the lander.  This  data is uplinked to the orbiting 
spacecraft  at a later time. The planner  uses  estimates of the 
amount of data  compression to plan when uplink activities 
are  necessary.  Because the compression  algorithms  are 
content  dependent,  these  estimates may significantly 
deviate  from  actual  achieved  compression. 

After Oven 1 Failure oven 1 
fails 

Figure 5 Oven State  Example 

sample  activity is greater than expected because the 
compression  achieved is less than  originally  estimated. 
The  planner  realizes that it will  not have sufficient buffer 
memory to perform the third sample  activity.  This results 
in an over-subscription of the data buffer depletable 
resource.  The  planner knows that such a conflict can be 
repaired by: 1)  removing  activities that contribute to 
resource usage or 2) adding an activity which renews the 
resource. In this case these two  options  correspond to 
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Figure 7 Activity Update 
deleting the  third sample  activity or adding  an uplink 
activity.  (The uplink activity  renews  the  buffer  resource by 
uplinking data to  the orbiter.) The  planner  resolves this 
conflict by adding an uplink activity  after the second 
sample  activity,  freeing  memory  for  the third sample 
activity  (see  Figure 6.) 

Another  demonstrated  CASPER  capability  is to replan 
based  on activity parameter  updates  (Objective 3). In the 
scenario, the mining operation using the  drill  takes  longer 
than expected.  This  delays the oven  experiment  because 
no sample is  yet prepared.  The  actual  conflict is a 
violation of the temporal relationship  between  the  mining 
activity and  the  oven experiment  activity.  (Mining  must be 
completed before we continue to the oven  experiment; see 
Figure 7.) In this example,  the  planner  moves  the  oven 
experiment  activity in order to repair this conflict. 

- 



Empirical Evaluation 
In order to validate the effectiveness o f  our continuous 
planning  approach we have performed a number ot 
empirical tests t o  measure  CASPER performance i n  tcrnis 
of: 

I .  

2. 

3. 

responsiveness - the ability to deal with execution 
feedback in a timely  fashion; 
robustness - the ability  to  produce  executable plans 
despite  run-time  variations in state, resource, and 
activity  durations;  and 
plan  effectiveness - a measure of  the overall 
goodness of executed  activities (with respect to 
achieving plan goals). 

We assessed  these  performance metrics using a stochastic 
version of the ST4 simulation  described  above. This 
simulation had a number of random variables, which are 
described  below. 

Compression - we  model  the  compression for 
science  data as a normal random variable with a 
mean of 0.9 and a standard  deviation of 0.25*0.9. 
This  has  the  effect of forcing the planner to respond 
to  buffer over-runs (as described  above)  and buffer 
under-runs  (to  optimize the plan). 
Drilling  Time - we model the  amount of time to 
drill  in  minutes  as a random variable with mean of 
30 and standard  deviation of 3 .  
Drilling  power - we  model the actual  power 
consumption from  drilling in watts as a normal 
random  variable with mean 40 and standard 
deviation 4. 
Oven  Failure - we model oven failure  occurrence as 
Poisson  distributed with each  oven  having a 50% 
chance of failure  over the entire mission horizon. 
Data  Transmission Rate: we model the time to 
transmit  data in kilobits per second as a normal 
random  variable with a mean of 100 and a standard 
deviation  of 10. This is intended to model the 
variability in communications  to the orbiter. 
Oven  Warming  and  Cooling  Times: we model the 
amount of time to heat up the sample and for the 
oven to cool  down in minutes as random variables 
with means of 30 and 120, and standard deviations 
of 3 and 12, respectively.  This  is intended to model 
the  unknown  thermal  properties of the samples. 

In our tests we compare the CASPER  continuous planning 
repair  approach to two  alternative  approaches: 

1. Batch  planning with no feedback - in this approach 
an operations plan is generated from  the  initial state 
and  this plan is executed.  No feedback from 
execution is  used. We run  this approach using 
nominal  times  and  resource usages and worse-case 
estimates  using the 1 - 0  estimates for random 
variables. 

I3x[ch replanning on failure - in  (tits approach an 
opera[ions plan is generated from scratch.  When an 
actlvlty fails, the execution  system  halts  execution 
and replans from scratch  (rather than modifying the 
existing plan as i n  the CASPER approach). NO 
activities are executed while the planner is 
replanning. As in Case I we  run this approach 
using  both nominal models and worse-case models. 

In order to assess the responsiveness of the  system, we 
measured the average  amount of time from the receipt of 
an update that required replanning  to  the time when a 
conflict free plan is available  (see  Table 1: Time  to  Correct 
Plan). 

In order  to  assess the robustness of the system, we track 
the number of times when an invalid activity is 
commanded  (see Table 1 :  Number of Invalid Commands). 

In order to assess the plan effectiveness,  we  measure  the 
science return of executed  activities (as measured by 
number of samples  drilled and analyzed in situ  where  the 
data  was  successfully  transmitted to the  orbiter) 24 science 
goals  are originally submitted to the system, and  we  report 
the number  completed  successfully. (See  Table I: Number 
of Achieved  Science Goals). 

# invalid # achieved time to 
commands science  goals correct  plan 

CASPER 

54.7691  2.1941 Batch 
20.063 2.365 

planning 

replanning 
Batch 20.125 6.722 17.977 

I Table 1 Performance  Comparison Averages I - 
In our setup,  CASPER was running on a Sun 

Sparcstation Ultra 60 with a 359 MHz process with 1.1 GB 
Memory. During each run, the simulator  updates  the plan 
an average of 18,000 times. (Most of these  are battery 
power level updates.) On  average, only 86 updates  result in 
conflicts that should be handled by the planner/scheduler. 

We  observe that CASPER  outperforms  batch  planning 
and batch replanning in the ST4 domain in terms of 
spacecraft  commanding  and  achieving science  goals. 

Note that batch planning  requires no time to  correct an 
updated plan because it does not replan,  and  therefore  is 
superior to CASPER in terms of the amount of time 
required to correct a plan. However,  batch  planning  suffers 
considerably due  to  incomplete data transmissions  and 
spoiled experiments  where  samples  where  placed  into 
inappropriately configured or failed ovens. 

Batch replanning performs much better, but the replan 
time translates into missed  opportunities  to plan and 
schedule  science goals. Also, more invalid commands  are 
executed due  to the time it takes to replan. 

CASPER  does  execute some invalid commands  due  to 
the  fact  that it takes some time to correct an invalid plan, 
hut CASPER  achieves far more science  goals. 



Discussion Related Work 
While the current  prototype has  been tested on a range of 
cases i n  which  state updates require  replanning, we have 
focused o n  execution feedback that cause  conflicts in  thc 
plan. In the case of the failed oven, buffer over-use, and 
activity  completion time problem, the state  update  (when 
propagated  through the plan) causes a conflict.  There are 
other  cases in  which a state update enables a plan 
improvement. For example, 

0 battery power usage might be lower than expected 
enabling  insertion of  an additional  sample activity 
content-dependent  compression might perform 
better than expected  allowing  storage of additional 
experiment  data; or 
drilling  might be faster than expected again 
allowing  for  additional  science  activities. 

In each of these  cases, the planner needs to be aware of  the 
potential  for  improvement in the  current plan and  be 
triggered to attempt to take  advantage of the  fortuitous 
situation. In related  work  (also  submitted to this 
conference), we have been developing plan optimization 
techniques for representing  soft  constraints  (preferences) 
and  improving  plans with respect to these  preferences  (e.g., 
do more  science).  Our  approach to optimization is  an 
anytime,  incremental  approach, thus the timeslices for the 
planner  can be  used to attempt to improve the plan if there 
are no conflicts in the  plan. 

A  second  issue  is that in the  current  prototype, the 
planner  can  only respond to unexpected changes on 
activity  boundaries.  This is a significant  limitation when 
there  are  activities that have extremely  long  durations. 
This  limitation  is  because the planner  does not  have a 
model  detailed  enough to predict the resultant  state if 
activities  are  interrupted in mid-execution. It  would  be 
useful if the planner could incorporate a model that could 
represent  interruptible  activities and act  appropriately. 
Currently  such  phenomenon  must be modeled by breaking 
the  activity  into  smaller  activities. 

While we have tested our prototype on a range of 
realistic  scenarios, we would like to have a larger set of 
missions and concepts to test against.  Because  CASPER is 
currently  being used for  autonomous  rover  applications, we 
are in the process of adapting  rover  simulations for similar 
testing.  Additionally we anticipate having access to 
several  other  spacecraft  simulations. We intend to further 
test and  validate our approach  against these missions. 

Another  interesting  area  for  future work is  investigating 
more  powerful  commitment  strategies.  One could easily 
envisage  problems in which different  classes of activities 
would  have  different  possibilities for interruption or might 
be terminatable with sufficient  lead-time.  Enabling the 
planner to represent these contexts and handle them 
appropriately  would be desirable. 

The high-speed local search  techniques used in our 
continuous planner prototype  are an evolution of those 
developed for  the DCAPS system (Chien et a l .  1999) that 
has proven robust in  actual applications. in terms of 
related  work, iterative  algorithms have been  applied to a 
wide range of computer  science  problems  such as traveling 
salesman  (Lin & Kernighan  1973) as well as Artificial 
Intelligence  Planning  (Biefeld & Cooper  1991,  Chien & 
DeJong  1994,  Zweben  et  al.  1994,  Hammond  1989, 
Sussman  1973).  Iterative  repair  algorithms  have  also been 
used  for a  number of scheduling  systems.  The 
GERRY/GPSS  system  (Deale  et  al.  1994,  Zweben  et  al. 
1994) uses iterative  repair with a global  evaluation 
function and simulated  annealing to schedule  space  shuttle 
ground processing activities. The  Operations  Mission 
Planner (OMP)  (Biefeld & Cooper  1991)  system used 
iterative repair in combination with a historical  model of 
the scheduler  actions  (called  chronologies) to avoid cycling 
and getting  caught in local  minima.  Work by Johnston  and 
Minton  (Johnston & Minton  1994)  shows  how  the min- 
conflicts  heuristic can be  used  not only  for  scheduling but 
also for a wide range of constraint  satisfaction  problems. 

The  OPIS system (Smith  1994)  can  also be viewed  as 
performing iterative  repair.  However,  OPIS  is  more 
informed in the application of its repair  methods  in that it 
applies a set of analysis  measures to classify the bottleneck 
before selecting a repair  method.  With  iterative  repair  and 
local search  techniques, we are  exploring  approaches 
complementary to backtracking  refinement  search 
approach used in the New  Millennium  Deep  Space  One 
Remote  Agent  Experiment  Planner (ARC  1999). 

Excalibur  (Narayek,  1998)  represents a general 
framework for using constraints to unify planning and 
scheduling  constraints,  uncertainty,  and  knowledge.  This 
framework is consistent with the CASPER  design, 
however in this paper we have focused on a lower-level. 
Specifically, we have focused on re-using  the  current plan 
using iterative repair and specific  locking  mechanisms to 
avoid race conditions. 

Work on  the PRODIGY  system  (Cox & Veloso  1998) 
has indicated how goals may  be altered  due to 
environmental  changesifeedback.  These  changes  would be 
modeled in  our framework via task abstractionhetraction 
and decomposition for potentially  failing  activities.  Other 
PRODIGY work (Veloso, Pollack, & Cox  1998) has 
focused on determining which elements of world state need 
to be monitored because they affect plan appropriateness. 
In our approach we have not encountered this bottleneck, 
our fast state  projection  techniques  enable us to detect 
relevant changes by noting the introduction of conflicts 
into  the plan. 

Work on CPEF  (Continuous  Planning  and  Execution 
Framework)  (Myers 1998) uses PRS,  AP,  and  SIPE-2, also 
represents a similar  framework to integrating  planning and 



execution.  CPEF and CASPER  differ in  ;1 number o f  
ways. First, CPEF  attempts to cull out key aspects of  the 
world to monitor (as is necessary in general  open-world 
domains).  They also  suggest the  use of iterative repair 
(they use the term  conservative  repairs). And their 
taxonomy of failure  types is very similar to ours in terms 
of action  failure  and  re-expansion of task networks  (re- 
decomposition).  However, in this paper we have focused 
on  lower level issues in synchronization and timing. 

Work in the O-Plan  system has also  addressed rapid 
replanning  (Drabble et ai.  1997).  They  describe an 
approach that generally  invokes the planner with the 
current plan in a repair  mode  from the current  state. In this 
way their  approach  and the CASPER one are very similar. 
However, we have  focused  on  lower-level timing and 
synchronization  issues  necessary for execution  and 
planning on a  shorter  timescale. 

Work in the 3T system  (Bonasso  et  al.  1997) has also 
examined  issues of integrating  planning and execution. 
Again, they present a framework  consistent with our 
architecture but we have focused on lower-level  timing 
issues. 

Conclusions 
This  paper has described an approach to integrating 

planning  and  execution for spacecraft  control and 
operations.  This  approach has the  benefit of reducing the 
amount of time  required  for an onboard  planning  process 
to respond to changes in the  environment or goals. In our 
approach,  environmental  changes or inaccurate  models 
cause  updates to the current  state  model  and future 
projections.  Additionally, the planner’s  current goal set 
may change. In either case, if these changes  matter  (e.g., 
the current plan no longer  applies) they will cause  conflicts 
in the current  plan.  These  conflicts are attacked using fast, 
local  search  and  iterative  repair  methods 
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